QUANTITATIVE APPROACH TO RAPID SEISMIC EVALUATION
OF SLAB-ON-GIRDER STEEL HIGHWAY BRIDGES

By Murat Dicleli' and Michel Bruneau,” Member, ASCE

ABSTRACT:

A quantitative approach follows for developing a methodology for the rapid seismic evaluation

and ranking of slab-on-girder steel highway bridges. In the development of this methodology, analytical ex-
pressions are introduced to calculate the seismically induced forces and displacements in bridge components,
first assuming that damage to bearings is not acceptable and then removing this constraint. In the latter case,
the superstructure is assumed to become unrestrained and slide on its supports. The seismic screening of the
bridges is based on the calculation of a ranking index defined as the product of an importance index and overall
damage index. Unlike other existing methodologies, the overall damage index of the structure is determined
considering the impact of damage to each component on the successive failure of other components and structure
as a whole. A cut-off mechanism is introduced to prevent the potentially undue impact some dominating societal
aspects could have on the ranking of existing bridges with otherwise excellent seismic-resistance adequacy. The
proposed methodology also quantitatively addresses the risk inherent to all seismic hazard zones.

INTRODUCTION

A sizable number of steel bridges in North America have
been designed and constructed at a time when seismic-resistant
requirements were nonexistent or inadequate by today’s stan-
dards. Recent earthquakes such as the 1989 Loma Prieta, 1994
Northridge, (Earthquake Engineering Research Institute 1990,
1994) and 1995 Kobe earthquakes (Bruneau et al., in press,
1995) have demonstrated the seismic vulnerability of existing
highway structures designed in those conditions. To avoid
bridge collapses, reduce the risk of extensive damage in future
earthquakes, and most effectively allocate the limited financial
resources available for this task, the bridges most in need of
seismic retrofit must be identified, taking into account their
structural seismic deficiencies as well as their consequences of
failure on the economic, social, and emergency deployment
aspects. To identify those bridges, engineers must determine
the physical state of each bridge based on engineering draw-
ings and field inspection and calculate their response to the
probable seismic excitations at the site. Assessing the seismic
response of each specific bridge by rigorous structural analysis
is a long and tedious process. Thus, a methodology for rapid
but refined seismic evaluation of existing steel bridges is de-
sirable.

While methodologies allow to rapidly identify the seismi-
cally deficient bridges and rank them in terms of their respec-
tive vulnerability [Applied Technology Council (ATC) 1983,
CALTRANS 1992, Filiatrault et al. 1994], it remains that the
bridge vulnerability aspect of these methodologies is crude and
generally limited to simple recognition of undesirable struc-
tural features known to have performed inadequately in past
earthquakes. Thus, bridges sharing such features would also
share the same rating, independently of variations in geometry
and other structural properties. As one step to improve on this
situation, a methodology is proposed to perform rapid, yet
quantitative, seismic vulnerability assessments. It was devel-
oped and applied for a special class of bridges, namely single-
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span and multispan slab-on-girder highway steel bridges. In
the latter case, only steel columns were considered, as these
have received little attention in past research [whereas the be-
havior of multispan bridges having concrete columns has al-
ready received considerable attention (e.g., Priestley 1985,
1988; Priestley and Park 1987; Ghobarah and Ali 1988 and
Saiidi et al. 1988)].

The spans of the simply supported bridges studied herein
are assumed to be supported by fixed bearings at one end and
by expansion bearings at the other end. For continuous
bridges, fixed bearings are assumed to exist at one abutment,
expansion bearings at the other, and the columns are assumed
to frame continuously into the girders. The superstructure in
most of these bridges is supported by steel sliding bearings.
The fixed type of such bearings is shown in Fig. 1. The ex-
pansion type is nearly identical but without the longitudinal
stopper bars. Even minor earthquakes have caused the failure
of anchor bolts, keeper bar bolts, and welds in such bridge
bearings [Federal Highway Administration (FHWA) 1987].

Accordingly, first assuming that damage to bearings is un-
acceptable, analytical expressions for the fundamental periods,
seismically induced bearing forces and column moments in
both orthogonal directions are introduced throughout the de-
velopment of the methodology. Then, it is assumed that stable
damage to bearings is possible and acceptable, as would be
the case if anchor bolts of stocky sliding bearings rupture dur-
ing an earthquake. This would allow the superstructure to slide
on its abutments’ support. A chart of the expected sliding dis-
placements at these supports as a function of simple bridge
parameters (Dicleli and Bruneau 1995a) is then used to derive
analytical expressions for column moments. Using these ex-
pressions and findings from previous studies (Dicleli 1993;
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FIG. 1. Typical Fixed Sliding Bearing: (a) Top Plate; (b) Side
View of Bearing; (c) Bottom Plate Plan View; (d) Front View of
Bearing




Dicleli and Bruneau 1995a,b,c), a methodology for rapid seis-
mic evaluation and ranking of steel highway bridges is devel-
oped.

METHODOLOGY —BASIC CONCEPT

In the methodology proposed, a ranking index, I, is used
to identify and rank the bridges in greatest need of retrofit. It
is defined based on the interaction between bridge importance
and vulnerability, as expressed by two variables: the impor-
tance index, I;, and the overall damage index, I, of the bridge.

The importance index varies between 0 and 1 as a function
of the impact of damage on the social, economic, and practical
aspects of the problem. The importance of a bridge is evalu-
ated by considering all consequences of its damage/loss on the
highway system and local community, the ability to provide
emergency services, the national security/defense network and
overall postearthquake recovery activities in the affected area.
The ratio of repair or replacement cost to seismic retrofit cost
is another important aspect addressed by the importance index.
The procedure followed to classify bridges according to their
importance is well established (CALTRANS 1992) and need
not be modified. In summary, bridges with an importance in-
dex of O are those for which all consequences of failure are
acceptable, whereas, bridges with an importance index of 1
are those whose loss is unacceptable; bridges in the latter case
would urgently need to be retrofitted if deficient.

The overall damage index, I,, of a bridge is a function of
the damage indices of its different components. Component
damage indices reflect the ability of various key structural
components to resist earthquakes likely to occur at a site with
a preselected probability of exceedance, and are called the site
earthquake thereafter. Damage indices are expressed as de-
mand/capacity ratios for these components; values less than
1.0 indicate that the corresponding component is unlikely to
fail during the site earthquake, whereas values greater than 1.0
denote possible failure. Obviously, the bridge components that
could potentially be damaged during an earthquake vary de-
pending on the type of bridge. For the steel bridges studied
here, three types of component damage indices are considered.
These are the seat-width index, I, bearing-damage index,
Iy, and column-damage index, I,. These indices will be de-
scribed in detail in the subsequent sections. Component dam-
age indices for the foundations and abutments are not consid-
ered since they are beyond the scope of the present study, but
could be easily included in the proposed methodology. Foun-
dation and liquefaction issues have been addressed by other
researchers (e.g., Kawashima 1990; Youd 1993; and Seed and
Idriss 1982). Likewise, the effect of seismic restrainers was
neglected but could be considered if these bridges were eval-
uated for possible further retrofits. Skewed or curved bridges
are also beyond the scope of the present work.

SEAT-WIDTH INDEX

Single-Span Simply Supported and Continuous
Bridges

For single-span simply supported and continuous bridges,
the seat-width index is defined in both transverse and longi-
tudinal directions. In the transverse direction, it is defined as

Lor = (u; + 50)/SWT ¢))

where u, = transverse sliding displacement of a bridge struc-
ture (mm) whose bearing would have been damaged, and is
obtained from Fig. 2 using the site peak ground acceleration;
and SWT = seat width (mm) measured in the transverse direc-
tion from the edge of the exterior bearing to the edge of the
abutment. An additional length of 50 mm is provided in the
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FIG. 2. Sliding Displacement per Peak Ground Acceleration
{%g) as Function of Period for Various s Values (Mean of West-
ern U.S. Earthquakes)

previous equation considering that damage may occur to the
unreinforced part of the abutment when the superstructure
slides.

In the longitudinal direction, the movement of the deck is
restricted by the abutment walls at both ends (in the present
paper, unless indicated otherwise, the work ‘‘deck’’ is used as
an inclusive term for the combination of slab and girders).
Therefore, neglecting deformations of the abutments, the slid-
ing displacement of the bridge cannot be larger than the ex-
pansion-joint width (EJW). Accordingly, the seat-width index
in the longitudinal direction is defined by the following equa-
tion:

u, + 50 - 0.84L, + 50
SWL ~ SWL

where the term 0.84L; = EJW (mm) obtained by conserva-
tively assuming a temperature differential of 70°C (Dicleli and
Bruneau 1995c¢); Ly = total end-to-end length of the bridge
(m); and SWL = seat width (mm) measured in the longitudinal
direction from the centerline of the bearings to the edge of the
abutment. Note that a parameter accounting for deformation
of the abutments could be added to the preceding equation if
such deformations are expected.

Fig. 2, key to the calculation of this index, is constructed
using a number of western U.S. earthquakes and is used to
obtain the sliding displacement of bridges. In the figure, the
vertical axis is the sliding displacement, U, normalized by
peak ground acceleration expressed as a fraction of gravita-
tional acceleration, A,, and the horizontal axis is the funda-
mental period. Each line corresponds to a dimensionless ratio,
{5, equal to the sliding resistance of a given structure, F;, di-
vided by the product of its effective modal mass, M., and the
peak ground acceleration, A,. For single-span simply sup-
ported and continuous bridges

U = 8w, /A, 3)

where w, = percentage of the weight of the structure transferred
to all supports where friction resistance exists; and p., = friction
coefficient. Note that the product of w, and p, is equal to the
ratio of F; over the structure’s total weight.

Fig. 2 is obviously useful only if the peak acceleration at
the site is larger than the minimum peak ground acceleration
required for sliding. For single-span simply supported and
continuous bridges, this minimum required peak ground ac-
celeration for sliding, as a fraction of gravitational accelera-
tion, for both transverse and longitudinal directions of earth-
quake excitations is expressed as (Dicleli and Bruneau 1995b)

A, = (T8BIw, 1, S

where B = ratio of spectral acceleration S, to peak ground

2

IswL =
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acceleration A,. For single-span simply supported bridges, the
total weight of the structure is transferred to the abutments.
Therefore, w, is 1.0 for the transverse direction sliding but only
0.5 for the longitudinal direction sliding since such bridges are
designed to move freely at one of their ends in this direction.
For continuous bridges, some portion of the weight is trans-
ferred to the columns, and therefore w, is a function of the
number of column bents in the structure. However, it can be
calculated approximately by considering the tributary weight
transferred to the supports where sliding can occur.

To obtain the seat-width index for single-span simply sup-
ported and continuous bridges, the transverse and longitudinal
direction elastic fundamental periods of the structures must
first be calculated using, respectively, (5) and (6) derived as

T,=

2mlL}

mEl, L[S ) 1 !
+= D Knlsin—2) +Kp|l - o=——5——
2Ly wzg "\MT, " GEl/L;Kye)! + 2
)

4m*mL EAp 1
T, = 1+ _——
' \/3EAD [ LK), (3 (EAp/LK,) + 1)] ©

In the preceding equations, m = total mass; L, = total end-to-
end length of the bridge; E = modulus of elasticity of steel;
Ap = cross-sectional area of the entire deck-and girder super-
structure transformed into steel using a modular ratio of 9; I,
= moment of inertia of the composite bridge superstructure
calculated considering the composite action between the con-
crete slab and steel girders (Douglas 1979); n,, = number of
columns set; K¢, = transverse stiffness of the columns set i
located at a distance x,; from the support; and K;, and K,y =
the longitudinal and rotational stiffness of the bearings group
located at the support and are expressed as (Dicleli and Bru-
neau 1995a,c)

np
KbL = 2 kbL,' (7)
=l
nh
Koo = D kol ®)
=1

where n, = number of bearings; and k&, and /,, = longitudinal
stiffness and distance to the centerline of the bridge deck for
bearing i. Note that K,, is zero in the case of the damaged
bearing condition since Fig. 2 has been derived using this as-
sumption. Fig. 2 has also been obtained assuming unrestrained
sliding. However, if the distance between the fixed-end bearing
and its abutment is considerably smaller than the required un-
restrained sliding, the engineer may wish to adjust the value
of u, in accordance with sliding energy dissipation principles
(Dicleli and Bruneau 1995b). As for impact with the abutment
at the sliding-bearing end, it is prevented by (2).

Also, steel columns typically encountered in existing con-
tinuous slab-on-girder highway bridges, because of their small
stiffness relative to the stiffness of the deck, were found to
only contribute negligibly to seismic resistance and to the
restraining of seismically induced lateral deformations of sin-
gle-span simply supported bridges and continuous bridges
(Dicleli and Bruneau 1995a,b). Therefore, when calculating
the transverse direction fundamental period of these bridges,
the second term in the denominator of (5), which represents
the contribution of the columns’ stiffness, could be ignored.
Interestingly, this behavior is quite different in multispan sim-
ply supported steel bridges where the column stiffness plays
a dominant role (Dicleli and Bruneau 1995c).
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In the case of rigid bearings, since the longitudinal stiffness
of the bridge superstructure is large, the longitudinal direction
fundamental period is obviously very small and would not
need to be calculated if a conservative design spectrum having
a constant acceleration region at low periods was used. How-
ever, the methodology proposed here considers the true spec-
tral shape, with its increasing acceleration level at low periods;
this has a considerable impact on the conclusions of a seismic
evaluation or vulnerability assessment study at low periods.

In summary, to determine the seat-width index in this case,
the engineer must; (1) calculate periods using (5) and (6); (2)
obtain B in both orthogonal directions from a design spectrum
or a spectrum developed specifically for the site under consid-
eration; (3) obtain the site peak ground acceleration, A, as a
fraction of gravitational acceleration from a seismic map or
site-specific information; (4) determine the friction coefficient
for the bearings at the abutments, considering the condition of
the abutments and type of bearings; (5) use (4) to obtain A,
required for sliding in both orthogonal directions; (6) if A, >
A,,, take u, as 0, otherwise calculate ¥ using (3) and obtain
from Fig. 2; and (7) substitute u, obtained for transverse and
longitudinal directions, respectively, in (1) and (2) to obtain
the seat-width indices in both orthogonal directions. The larger
of these two is the seat-width index, I, of the structure.

It is noteworthy that the bearings are assumed to be dam-
aged, and therefore their strength is not considered for the
calculation of the seat-width index. The reasons for this will
become clear when the procedure to calculate the overall dam-
age index is presented.

Muitispan Simply Supported Bridges

For multispan simply supported bridges, the seat-width in-
dex is defined as

Loy = (SWi/SWL Jmax ®

where SWL; = width (mm) of the bearing seat supporting the
unrestrained expansion end measured from the centerline of
the bearing to the support edge at expansion joint i; and SW;
= minimum required seat width (mm) defined by the smaller
of the results obtained from the following two equations
(Dicleli and Bruneau 1995c¢):

SW; =50 + 0.84(L; + L)) (10)

Li— + Li
SW, =50 + 0.84L, + <3o - —‘—) ey,

10
N <30 _ u_L__) h,

10 (11)

where A, = height of column i; L; and L;,, = lengths of two
adjacent spans supported by column i; and Ly = total end-to-
end length of the bridge. The ratio of SW, to SWL, is calculated
for each expansion joint, and the maximum of these defines
the seat-width index.

BEARING-DAMAGE INDEX

Single-Span Simply Supported and Continuous
Bridges

The bearing-damage index for single-span simply supported
and continuous bridges is defined as the ratio of the bearing-
force demand, B,, to the ultimate capacity, B,., of the bearing

Ibd = Br/Brc (12)

The bearing-force demand is defined by the following equa-
tion:



B, = V(Cib,y)* + (Cybyy + Cib,) (13)

where C, and C, = correlation factors to account for the si-
multaneous occurrence of seismic excitations in both orthog-
onal directions, and the directional uncertainty of the earth-
quake motions, b,, and b,,,, are respectively transverse and
longitudinal direction bearing forces produced by transverse
direction seismic excitation and are expressed as

4BA, [m | K 1
[ el B bl —_
b =B [ Ko (- s Ts) | 09
4BA 1
- P e —
™= Lrw? (1 (3E1D/L1Kw)+2> bk (19

and b,, = longitudinal direction bearing force produced by lon-
gitudinal direction seismic excitation expressed as

b = 32 + (L K,./[EAp))} | mBA,
T B + ALK, /EAR))? + 3

16)

ny

In the preceding equations, /,, = distance of the exterior bear-
ing to the centerline of the bridge deck; w, = fundamental
circular frequency in the transverse direction; and all other
terms have been defined previously.

It is noteworthy that bearing forces produced by transverse
direction seismic excitation are the result of two force com-
ponents as seen in Fig. 3. The first component is produced by
the reaction force at the support and oriented in the transverse
direction (b,,). The other component is produced by the in-
plane support moment and oriented in the longitudinal direc-
tion (b, ). The resulting bearing force is the vectorial sum of
these forces.

To account for bidirectional seismic excitations, two load
cases are considered to obtain the bearing-force demand. For
the first load case, C, and C, are respectively taken as 1.0 and
0.3, and for the second load case they are taken as 0.3 and 1.0
(FHWA 1987). The largest of the results from these two load
combinations is used to determine the bearing-damage index.

The capacity of traditional type of bearings is assumed to
be governed by the shear capacity of the anchor bolts. Ac-
cordingly, the bearing capacity is defined as

Brc = nabAabTy (17)

where T,, A, and n,, = the shear strength, area, and number
of anchor bolts. However, other local failure modes should not
be overlooked if probable. .

Hence, the procedure to determine the bearing-damage in-
dex for single-span simply supported and continuous bridges
requires (1) calculating the fundamental periods in the trans-
verse and longitudinal directions using (5) and (6); (2) obtain-
ing B in both orthogonal directions; (3) obtaining A,, as a
fraction of gravitational acceleration; (4) calculating the bear-
ing forces due to seismic excitations in both orthogonal direc-
tions using (14), (15), and (16); (5) substituting these forces
in (13) to obtain the bearing-force demand and; (6) determin-

/ ,,,,,,,,,,,,,,,,,

—~» Resultant bearing force

Bearing force due to reaction
1 T2+ Bearing force due to moment
o4
Bridge centerline

. Transverse direction
Reaction loading

FIG. 3. Bearing Forces due to Loading in Transverse Direction

ing the capacity of the bearings using (17). The bearing-dam-
age index of the structure is the bearing-force demand divided
by the capacity.

Multispan Simply Supported Bridges

In the case of multispan simply supported bridges, due to
nonlinearities resulting from the collision of adjacent super-
structure components in the longitudinal direction even in the
absence of bearing failure, simple analytical expressions for
the bearing-force demands cannot be obtained. However, it is
generally accepted that impact may produce high forces in the
bearings and damage them (Zimmerman and Brittain 1981;
Imbsen and Penzien 1986). Accordingly, the capacity of the
bearings is conservatively assumed to be limited by the peak
ground acceleration, A,., required for collision of the column-
fixed decks (i.e., decks connected to the column bent by fixed
bearings) and is defined as (Dicleli and Bruneau 1995¢)

_nk EIW (P,
e Bng kcl.hc

where k., and A, = longitudinal direction stiffness and height
of the column; P, = axial force in the column due to dead
load of the structure; n, = number of columns at a bent; and
mp = mass of the superstructure fixed to the column bent. The
bearing-damage index for multispan simply supported bridges
is then defined as the ratio of site peak ground acceleration to
the peak ground acceleration required for collision

Ibd =A s/A (19)
ps!pe

(18)

To calculate the bearing-damage index in this case, it is
recommended to consider the column-fixed deck adjacent to
the narrowest expansion joint, or, if the EJWs are identical,
the deck with the longest span. Also, the period of the column-
fixed deck, needed to determine B, is

T, =2vVmp/K, (20)

where K, = stiffness of the column set obtained by summing
up the column stiffnesses.

COLUMN-DAMAGE INDEX

Using case studies and capacity design concepts, the writers
observed that seismically induced shear failures in the steel
columns of the type of bridges considered here are unlikely,
contrary to what has been observed in the past in reinforced
concrete bridge columns. Accordingly, only the effect of axial
and flexural forces is considered here. Conservatively, using a
linear biaxial moment-interaction relationship, the column-
damage index is defined as the sum of the ratios of seismic
moment demands of the columns to their flexural capacities in
both orthogonal directions

;o CMy + CGMy, | CiMpy + CMy,
cd =~
M, M,

@n

where M,, and M,, = transverse and longitudinal direction flex-
ural capacities of the column accounting for the presence of
axial load due to weight of the structure. These flexural ca-
pacities can be obtained from a stability-interaction equation
(e.g., Duan and Chen 1989), and the steel bridge columns are
conservatively assumed to fail as soon as the capacity delim-
ited by this statically derived interaction curve is reached
(Dicleli and Bruneau 1995a,c). My, and M,,, are the magnified
(i.e., including second-order effects) transverse seismic mo-
ment demands due to seismic excitation in the transverse and
longitudinal directions, respectively. My, has not been used in
the present study but was included previously to make the
equation more general. Mg, and My, are the magnified lon-
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gitudinal seismic moment demands due to seismic excitation
in the longitudinal and transverse directions, respectively. The
largest of the column-damage indices resulting from the two
same load cases considered to account for bidirectional earth-
quake excitation (i.e., C, = 1.0, C; =03 and C, =03, G, =
1.0) is retained.

Continuous Bridges

For continuous bridges, the seismic moments in the columns
are determined by the displacement of the deck at the col-
umns’ location. Therefore, the damage index of a bridge hav-
ing identical column sizes and heights at each bent need only
be calculated for the columns closer to the midspan, since
these have larger transverse direction displacement and larger
seismic moments. In other cases, each column set should be
checked separately.

To calculate the column-damage index for the undamaged
bearing condition, only the transverse direction response need
to be considered since, in the longitudinal direction, the stiff-
ness of the deck is relatively high resulting in negligible de-
formations and column seismic moments. In that case, Mg,
My, and M, are zero and the transverse seismic moment
demand, M, is

4BA .
My, = 2B o (;" > (kerh, + Pp) 22)

T

where k., = transverse stiffness of the column, and the column
damage index is given directly by (21).

However, if the bearings are damaged, the deck may slide
and produce seismic moments in both transverse and longi-
tudinal directions. Therefore, to calculate the column-damage
index for the damaged bearing condition: (1) calculate the
stiffness and flexural capacities of the columns in both or-
thogonal directions; (2) use (5) and (6) to calculate the fun-
damental periods in the transverse and longitudinal directions
assuming zero rotational stiffness for the bearing group; (3)
use these periods to obtain B in both orthogonal directions;
(4) obtain A, as a fraction of gravitational acceleration; (5)
assess the friction coefficient for the bearings at the abutments
and; (6) obtain A, required for sliding in both orthogonal di-
rections using (4). Then, depending on the magnitude of 4,
the following four cases arise:

1. If A, > A,, in both orthogonal directions, then u, is 0,
and follow the procedure for the undamaged bearing
condition to calculate the column-damage index.

2. If A, > A,, in the transverse direction and A, < A,, in the
longitudinal direction, use (22) to calculate the seismic
moment demand in the transverse direction. Then, get u,
from Fig. 2 for the longitudinal direction and calculate
the longitudinal seismic moment demand as

0.84L,
1,000

MExO = u:(kcLhr + PD) = (kcLhc + PD) (23)
where upper limit is obtained knowing that the sliding
displacement of the bridge in the longitudinal direction
is restricted by EJW of the bridge (i.e., 0.84L;).

3. If A, < A,, in the transverse direction and A, > A,; in the
longitudinal direction, ignore the response in the longi-
tudinal direction, obtain u, from Fig. 2 for the transverse
direction, and calculate the transverse seismic moment
demand as

T W, |, X,
MEy = <u: + T;{Sln T) (kcrhc + Pp) (24)

4. If A, < A,, in both orthogonal directions, obtain 4, in
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both orthogonal directions and substitute them in (23)
and (24) to obtain the transverse and longitudinal seismic
moment demands.

Multispan Simply Supported Bridges

Eigenvalue analyses for multispan simply supported bridges
showed that their transverse fundamental periods are governed
by that of the column bent having the largest tributary mass
to column-stiffness ratio. This period can be closely approxi-
mated when that bent is analyzed as part of a two-span simply
supported bridge having zero rotational stiffness at its abut-
ment supports (Dicleli 1993; Dicleli and Bruneau 1995¢). This
is expected since a multispan simply supported bridge is a
discontinuous structure (i.e., no rotational continuity between
two adjacent spans) composed of discrete column bents. If a
bridge has identical column sizes and heights at each bent, the
two adjacent spans with the largest average length and the
columns supporting them are selected. Otherwise, the columns
at each bent should be considered separately and the largest
damage index is retained.

In a multispan simply supported bridge subjected to seismic
excitation in the transverse direction, the exterior columns of
any given column set are the most vulnerable due to their
higher longitudinal seismic moments resulting from the rigid-
body rotation of the column-fixed deck. Therefore, these ex-
terior columns are considered for the calculation of the col-
umn-damage index.

Using the total mass of the selected two adjacent spans and
the transverse and longitudinal direction stiffnesses of the col-
umns supporting them, the transverse fundamental period of
the structure is

4m’m
Tl = K, K (25)
3| Ko+ -2 + =5
(’ Ly L3

where L, and L, = lengths of the selected two adjacent spans,
with columns connected to the span having length L,; and
K., = torsional stiffness of the column set defined as

Ko= D, kad?, (26)
i=1

where d,, = distance of column i to the centerline of the bridge
deck. Using the calculated period, the corresponding B, and
A, the seismic moment demands due to transverse direction
seismic excitation are given by

3BA
MEy = '_%%E Bmychhc (27)

3BA

Mo = 5o Bk, 28)
where B, and B,., = moment magnification factors to account
for the transverse and longitudinal direction second-order seis-
mic moments resulting from transverse displacement and tor-
sional rotation of the column bent due to seismic excitation in
the transverse direction (Dicleli and Bruneau 1995c). It is
noteworthy that if collision between the decks occurs at the
expansion joint due to the relative rotation of the adjacent
spans, then (27) and (28) may not give correct results. How-
ever, as demonstrated elsewhere (Dicleli and Bruneau 1995¢),
in most cases, steel columns are likely to be severely damaged
before impact takes place. Therefore, the equations derived can

generally be used to predict the columns’ seismic moments.
In the longitudinal direction, due to nonlinearities resulting
from the collision of adjacent superstructure components, the
seismic behavior of these bridges becomes very complex.



However, if the bearings are not damaged as a consequence
of these impacts, displacements as large as the sum of the
EJWs at one or the other side of the column under consider-
ation can possibly develop (Dicleli 1993; Dicleli and Bruneau
1995c¢). Therefore, the maximum possible longitudinal seismic
moment for the kth column is defined as

& ne,
Mg, = max {E EIW,, 2 EJW;} (k. he + Pp) (29)

il f=k+1

where n,; = number of expansion joints; EJW; = expansion-
joint width of joint i; and all other terms have been defined
previously.

OVERALL DAMAGE INDEX OF STRUCTURE
Single-Span Simply Supported Bridges

Bearings are the most vulnerable superstructure components
in the case of single-span simply supported bridges. Fortu-
nately, damage to these components does not necessarily result
in failure of the structure if they can remain stable while slid-
ing, as in the case considered here. However consequences of
this damage should be estimated. Accordingly, the overall
damage index, I, of the structure is defined considering two
of the following possible cases:

1. If the bearings are not damaged (/,; < 1.0), the damage
index of the structure is defined as the smaller of the
bearing damage or seat-width indices.

2. If the bearings are damaged (7,, > 1.0) the damage index
of the structure is defined only by the seat-width index
of the structure.

The first of the preceding two cases deserves additional ex-
planations. Consider two bridges, A and B, with identical bear-
ing damage indices of 0.7 but seat-width indices of 1.4 and
0.5, respectively. In the case of bridge A, since the bearings
are not likely to be severed, the structure is unlikely to slide.
Therefore, the fact that the seat-width index is larger than 1.0
does not pose any danger, and the bearing-damage index is
selected as the overall damage index for bridge A. In the case
of bridge B, the seat-width index is smaller than the bearing-
damage index, indicating that this bridge is even ‘‘safer’’ than
indicated by the bearing-damage index (i.e., even if the bear-
ings were severed, the structure would not fall off its supports).
Therefore, the seat-width index is the proper overall damage
index in this latter case. It is particularly important to preserve
a correct relative ranking, even among bridges presently iden-
tified as unlikely to fail, in the perspective that seismicity maps
(and local seismicity conditions obtained from site-specific de-
termination) are still evolving and still subject to change in
many regions of North America.

Continuous Bridges

Bearings and columns are the most vulnerable superstruc-
ture components of continuous bridges. Damage to columns
may result in the total failure of structure, but damage to bear-
ings does not have significant consequences unless the struc-
ture slides excessively. When sliding occurs, the structure may
fall off its support if there is not adequate seat width, or the
columns may be damaged due to large displacements at the
columns’ locations produced by the combined effect of sliding
and elastic deformation of the structure. Accordingly, the over-
all damage index, I, of the structure is defined considering
three of the following possible cases:

1. Ifl,,<10and [,, < I, then I, = I,.

2. If ;< 1.0 and [, > I, then the consequences of damage
to bearings should be investigated. Accordingly, assum-
ing that the bearings are damaged, seat-width and col-
umn-damage indices I¥, and % are calculated, and the
larger of these is selected as the temporary damage in-
dex, I¥. Then, overall damage index of the structure is
determined considering the following three possible out-
comes:

o If I: > Ibdv then Id = Ibd
M Ifch < I:: < Ibd’ then Id = 12‘
» IfI¥ <1, then I, =1,.

3. If I, > 1.0, then I, is determined by the larger of I, or

L,.

In the first of the previous three cases, since the column-
damage index is larger than the bearing-damage index and the
bearings are not damaged, the failure of the structure can only
result from damage to the columns, and therefore the column-
damage index is the overall damage index of the structure.
The second case is explained by the following example. Con-
sider two bridges, A and B, with identical bearing and column-
damage indices of 0.95 and 0.60, respectively. Since the bear-
ing and column-damage indices are identical for both bridges,
they may be ranked as equally vulnerable if the consequences
of damage to bearings are not considered. Now assume that
bridge A has a very low friction coefficient at the bearings,
and therefore it may have large sliding displacements if the
bearings are severed, whereas bridge B has a larger friction
coefficient at the bearings, and therefore the sliding displace-
ments are smaller (Dicleli and Bruneau 1995b). Assuming that
the bearings are severed, the seat-width and column-damage
indices are calculated as 1.4 and 1.1 for bridge A and 0.4 and
0.8 for bridge B. Accordingly, the temporary damage index is
the larger of the seat-width and column-damage indices and is
1.4 and 0.8 for bridges A and B, respectively. For bridge A,
since the temporary damage index is larger than 1.0, the result
of damage to bearings is the total failure of the structure. Con-
sequently, the bearings are the fuse elements of the bridge, and
therefore the bearing-damage index is selected as the overall
damage index. For bridge B, the consequence of damage to
bearings is only to increase the risk of damage to the structure
from 0.6 to 0.8. Accordingly, the temporary damage index is
selected as the overall damage index of the structure.

It is noteworthy that, in some occasions, sliding may pro-
duce less displacements at the column locations than those
produced by the elastic deformation of the structure before the
bearings are damaged. This may happen if the ground motion
has a high frequency content or high A,/V, ratio (Dicleli and
Bruneau 1995b). Consequently, the column-damage index cal-
culated assuming that the bearings are severed may be smaller
than the one calculated assuming that bearings are not severed.
The third element of the second case addresses this particular
aspect of behavior,

In the third outcome of the previous three cases, the behav-
ior of the structure after the bearings are severed is considered.
In this case, the structure may get damaged either if it falls
off its support or if the columns are damaged. Therefore, the
overall damage index of the structure is determined by the
larger of the seat-width or column-damage indices.

Multispan Simply Supported Bridges

In the case of multispan simply supported bridges, damage
to the bearings on the columns may create an unstable struc-
ture and result in failure. Inadequate seat width and column
capacity are also equally responsible for the failure of the
structure. Accordingly the largest of the seat-width, bearing,
and column-damage indices defines the overall damage index.
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ALTERNATIVE SIMPLIFIED APPROACH FOR
OVERALL DAMAGE INDEX

An even more rapid and conservative evaluation of damage
indices can be used by taking the larger of I, or I, as the
overall damage index for any particular bridge, assuming that
bearings will always be damaged by a severe earthquake. Fur-
thermore, if bearings are of a type that is unable to sustain any
damage in a stable manner, then the overall damage index of
the bridge should be taken as the largest of I, I, and I,
calculated, assuming undamaged bearings.

RANKING INDEX

The prioritization of seismic retrofitting of bridge structures
is based on the calculation of a ranking index defined as the
product of the importance and damage indices. According to
this, bridges with a higher ranking index have higher priority
for retrofitting. At first glance, this approach appears logical
and properly considerate of other nonstructural but important
societal issues. It is similar in this respect to the other existing
methodologies. However, there is a philosophical deficiency
in its application if left without a cut-off mechanism to alle-
viate the potential undue impact of dominating societal aspects
in existing bridges with already existing excellent seismic-re-
sistance adequacy. To correct this inconsistency and to ensure
that the perceived priorities concur with actual needs, it is
suggested that the ranking index be set to zero when the dam-
age index falls below a certain value, i.e., a cut-off value.
Recall that damage indices, calculated using the equations pro-
posed earlier, are functions of peak ground acceleration at the
site obtained from a seismic map. However, there is always a
risk that, at any site, peak ground acceleration specified in
probabilistic seismic maps are exceeded. Therefore, the upper-
bound value below which the damage index can be assumed
to be zero must be calculated by relating the risk level adopted
in current seismic maps and a lower predetermined acceptable
risk for the cut-off level. For example, in North America, seis-
mic maps are generally constructed assuming a 10% proba-
bility of exceedance in 50 years. In the present study, a 5%
probability of exceedance in 50 years is chosen as an appro-
priate lower-risk level to trigger the aforementioned cut-off
value. To obtain this cut-off value, the ratios, R,, of the peak
ground accelerations, A,s, for a 5% probability of exceedance
in 50 years to A, for a 10% probability of exceedance in 50
years are obtained for various seismic regions where the earth-
quake magnitude M,, is greater than 5.0. These calculations
are performed using seismologic maps where each seismic re-
gion is attributed a single Richter's law relationship. Such
regions must be defined prior to using the Cornell McGuire
method to develop the equal probability of exceedance contour
maps commonly found in building codes (Basham et al. 1983).
Then, each R, is multiplied by the area of the seismic region
and the results are summed up. This sum is divided by the
total area of all regions to obtain a weighted average of the
peak acceleration ratios. This is equivalent to calculating an
average seismic-risk exposure of the bridges inventory, assum-
ing that the number of bridges in these seismic regions is pro-
portional to the size of the region. Moreover, it also attenuates
the impact of extreme R, values applicable only over very
small seismic regions.

For example, the weighted average, R,,, of the acceleration
ratios is obtained as 1.239 for western Canada. This shows
that when the probability of exceedance is reduced from 10 to
5% in 50 years, the site peak ground acceleration increases
approximately 25%. Consequently, structures with a damage
index of 0.80 (i.e., 1/1.239) are considered to have reached
the targeted cut-off risk of damage. Accordingly, the ranking
index proposed in the present study is defined as
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_ s
le= {o.o (30)
It is noteworthy that this cut-off value can be obtained for any
other seismic regions with magnitude-frequency and acceler-
ation-attenuation relations different than those found in west-
ern Canada, but the previously proposed cut-off value is be-
lieved to be a reasonable broadly applicable value. Two
examples illustrating the proposed ranking procedure are pre-
sented in the following sections.

ifI,= 0.8
if I, <0.8

EXAMPLES

Two examples are considered to illustrate the preceding
methodology. The first example (example 1) is a three-span
continuous highway bridge, whereas the second one (example
2) is a three-span simply supported bridge. The specifics of
these bridges are summarized in Table 1. In both bridges, slid-
ing-type bearings support the superstructure under each girder.
Each bearing has a 90 X 400 X 220 mm bearing bar and a
230 X 400 X 50 mm base plate anchored by two 32 mm
diameter, 400 mm long anchor bolts with 230 MPa shear yield
strength, The capacity of each bearing, calculated using (17),
is 370 kN. The translational stiffness of each bearing in the
longitudinal direction is 320,000 kN/m and the translational
and rotational stiffness of the bearing group is calculated to
be 1.92 X 10° kN/m and 51 X 10° kN/m, respectively. A base
friction coefficient of 0.4 is proposed between the concrete
abutment and the bearings. Finally, all steel columns of those
bridges are oriented to develop strong axis bending in the lon-
gitudinal direction, and importance indices are arbitrarily se-
lected. Intermediate and final results are summarized in Table
2.

For the first example, all calculations are straightforward
applications of the previous equations, as indicated in the ta-
ble. The bearing-damage index is first calculated and found to

TABLE 1. Physical Properties of Bridges Considered in
Examples 1 and 2
Components of Example
damage-index calculations 1 2
(1 2 (3
Number of lanes 4
Number of spans 3 3
Span lengths (m) 35, 25, 30 35, 43, 37
Superstructure
Width (m) 16 7.4
Girder sections 6WWF1200 X 333 4WWF1200 X 333
Girder spacing (m) 3 2
Structure design composite compaosite
Slab thickness 190 178
Pavement thickness (mm) 70 65
Mass (tons/m) 12.56 5.88
Ap (m?) 0.592 n/a
I, (m*) 13.9 n/a
Expansion joints width (mm) n/a 25, 35, 30
Columns
Section W310 X 79 WWF400 X 178
Height (m) 6 55
Myy (KN -m) 115 415
M,x (kN -m) 295 1,207
k.r (kN/m) 111 847
ke (KN/m) 492 2,475
P, (kN) 683 612
By n/a 1.151
Bonsy n/a 1.052
Column bent
K; (kN/m) 666 3,388
K, (kN/m) 2,952 9,888
Seat widths
Transverse (mm) 85 110
Longitudinal (mm) 175 175
Aps (8) 0.3 0.3
I 0.9 0.8

Note: n/a means not applicable.




TABLE 2. Results for Examples 1 and 2 (Refer to Equation
Number Used to Calculate Results)

Components of Example
damage-index calculations 1 2
)] 2 (3
Direction Transverse Transverse
Longitudinal Longitudinal
Bearing-damage-index calculation
T (s) 0.3 (Eq. (5)] 1.26 [Eq. (25)]

0.165 [Eq. (6)] 1.0 [Eq. 20)]
B 2.50 0.99
2.24 1.25
b, [Eq. (14)] (kN) 563 n/a
b,y [Eq. (15)] (kN) 1,320 n/a
b, [Eq. (16)] (kN) 1,068 n/a
B, [Eq. (13)]
Load case 1 (kN) 1,589 n/a
Load case 2 (kN) 1,329 n/a
14 [Eq. (12)) 4.30 2.73
Column-damage index calculation
Mgy (kN -m) 70 [Eq. (24)] 942 [Eq. (27)]
Mexy (kN -m) n/a 204 [Eq. (28)]
Mex (kN-m) 148 [Eq. (23)] 926 [Eq. (29)]
I [Eq. 21))
Load case 1 0.36 1.93
Load case 2 0.68 1.28
Direction
Transverse n/a
Longitudinal
Seat-width damage index calculation
T (s) 0.34 {Eq. (5)] n/a
0.118 [Eq. (6)]
B 2.50 n/a
1.89
A, [Eq. (9] () 0.07 n/a
0.051
¥ [Eq. (3)] (kN) 0.389 n/a
0.211
u, (Fig. 2) (mm) 46 n/a
45
Lswr [Eq. (1)] 1.13 n/a
Lswe [Eq. (2)] —_ n/a
0.86
Resulting indices
Is. 1.13 1.05
Iy 0.76 1.93
Ly 4.30 273
Damage index
1 1.13 273
Ranking index
1. [Eq. (30)] 1.02 2.18

Note: n/a means not applicable.

exceed 1.0. Hence, the bearings are taken as damaged, and the
peak ground acceleration required to trigger sliding is calcu-
lated. To that end, the fraction of the superstructure weight
transferred to the supports is estimated approximately using
the tributary area of each end span. The resulting fraction of
the weight at the left and right abutments are 17.5/90 = 0.195
and 15/90 = 0.167, where 90 is the total end-to-end length of
the bridge. Therefore, the proportion of the weight effective
for resisting the sliding in the transverse direction is 0.36 (i.e.,
0.195 + 0.167) and 0.195 to resist longitudinal direction slid-
ing. Using this, the seat-width damage indices for the trans-
verse and longitudinal directions are calculated, as shown in
Table 2. Note that since the peak ground accelerations, A,,
required for sliding in both orthogonal directions are less than
the site peak ground acceleration of 0.3 g, the superstructure
will slide if the bearings are damaged. Sliding displacements,
seat-width indices, and other intermediate results for the trans-
verse and longitudinal directions are tabulated. Then, the col-
umn damage indices are calculated directly using (23), (24),
and (21) for the two load cases specified. In this example, the
damage index is the larger of the seat-width and column-dam-
age indices. It is noteworthy that conservatively assuming that
the bearings are damaged, the simplified alternative approach
yields the same result.

Calculation of the bearing-damage index for the second ex-
ample follows a different procedure. First, the two adjacent
spans with the largest average length must be selected (i.e.,
those having 43 and 37 m lengths in this case). The total mass
of this subassembly is calculated to be 470 tons. Then, (25)
and (20) are used to determine the transverse and longitudinal
direction fundamental periods of the selected subassembly, the
column-fixed deck with the longest span, and the correspond-
ing B values. Finally, using (18) and considering the deck with
the longest span, the minimum required peak ground accel-
eration for collision to occur is obtained as

a MckaBIW (P ) 4 X 2472 X 0035
T Bmpg kieh.) 125 X 253 X 9.81
612
X1 -————]=011
(1 2472 X 5.5) o 31

Dividing the peak ground acceleration of the site by this ac-
celeration, the bearing-damage index is obtained as 2.73. As
for the seat-width index, knowing that the seat width is 175
mm at every bent, it is only necessary to check the bent that
supports the longest span (i.e., the most critical one). Using
(10) and (11), the minimum required seat width is obtained as
183 mm at the expansion joint adjacent to the longest span,
and, as per (9), the resulting seat-width index is 1.05. Calcu-
lation of the column-damage index proceeds as for the pre-
vious example, except that different equations are used to cal-
culate the seismic moment demands. The resulting damage
index of this bridge is selected as the larger of bearing damage,
seat-width, and column-damage indices.

CONCLUSION

In this paper, a rapid seismic evaluation and ranking meth-
odology for steel highway bridges has been introduced. It is
more complex than other existing methodologies that are lim-
ited to simple recognition of undesirable structural features
known to have performed inadequately in past earthquakes.
However, the proposed methodology is based on a quantitative
approach that takes advantage of knowledge on the elastic and
inelastic seismic response of these types of bridges, and ad-
dresses the risk inherent to all seismic hazard zones. Contrary
to other existing methodologies, the overall damage index of
the structure considers the impact of damage to each compo-
nent on the successive failure of other components and the
structure as a whole. A cut-off mechanism is also introduced
to prevent the potentially undue impact of dominating societal
aspects in existing bridges with otherwise excellent seismic-
resistance adequacy.

It is also possible to use the proposed methodology as a
second-level evaluation to estimate the seismic performance of
a class of steel bridges without the need for complex modeling
and nonlinear analyses. For this purpose, simple question-and-
answer type of computer programs can easily be developed
using the methodology presented in this paper. Finally, the
approach proposed here could be followed as a model to pri-
oritize seismic retrofit activities for other bridge types.
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